IT & AI

To explain the method for real-time object detection using YOLOv8

Real-time Object Detection with YOLOv8
1. Setup Environment2. Install YOLOv83. Prepare the Model4. Load and Configure5. Real-time Processing
Install Essentials
Ensure Python, pip, OpenCV, PyTorch, and YOLOv8 dependencies are installed.
 Use pip or download from GitHub to install YOLOv8. 
Download Weights
Get pre-trained YOLOv8 weights from GitHub or official sources.
Setup Video Input
Load model weights and configure webcam using OpenCV.
 Capture and process frames in a loop for detection. 
6. Post-Processing
Interpret model output: bounding boxes, class IDs, and confidence scores. Filter by confidence threshold.
7. Display Results
Draw bounding boxes and labels on frames. Display using OpenCV.
8. Optimization
Use GPU for acceleration. Adjust input size for speed.
9. Deployment
Consider containers for scalable deployment beyond development.

답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다